概述:python 绘制降水量色斑图
# 引用部分 import numpy as np import pandas as pd from scipy.interpolate import Rbf # 径向基函数 : 将站点信息插到格点上 用于绘制等值线 import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib as mpl import cartopy.crs as ccrs import cartopy.io.shapereader as shpreader from cartopy.mpl.ticker import LongitudeFormatter,LatitudeFormatter import maskout #只显示某个地区 plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 1234567891011121314151617 # 数据准备 df = pd.read_excel('工作簿1.xlsx') #读取Excel df.columns = ['stid','lon','lat','height','rain'] # df = df[(df['rain']>0)&(df['lat']>35)&(df['lon']>115)&(df['lat']<50)&(df['lon']<130)] #筛选坐标在某个范围内,由于数据量少,直接在EXCEL中做处理 lon = df['lon'] lat = df['lat'] rain = df['rain'] 1234567 # 绘图准备 olon = np.linspace (125,131,120) #经纬坐标,0.05°分辨率 118°到126°0.05分辨率是有160个格点 olat = np.linspace (44,47,60) #纬度坐标,0.05°分辨率 olon,olat = np.meshgrid(olon,olat) #生成坐标网格 meshgrid网格化 func = Rbf(lon,lat,rain,function='linear') #插值函数 调用Rbf插值函数中的 cubic 插值法linear rain_data_new = func(olon,olat) #插值 rain_data_new[rain_data_new <0 ] = 0 1234567 #画布及绘图声明 fig = plt.figure(figsize = (16,9.6),facecolor = '#666666',edgecolor = 'Blue',frameon = False) # 画布 ax = fig.add_subplot(111,projection=ccrs.PlateCarree()) #绘图区 #色彩定制:24小时降水量级色标 clevs = [0.1,10.,25.,50.,100.,250.,500] #自定义颜色列表 cdict = ['#A9F090','#40B73F','#63B7FF','#0000FE','#FF00FC','#850042'] #自定义颜色列表 '#A9F090','#40B73F','#63B7FF','#0000FE','#FF00FC','#850042' my_cmap = colors.ListedColormap(cdict) # 自定义颜色映射 color-map norm = mpl.colors.BoundaryNorm(clevs,my_cmap.N) # 基于离散区间生成颜色映射索引 # 绘制等值线、等值线填色 cf = ax.contourf(olon,olat,rain_data_new,clevs,transform = ccrs.PlateCarree(),cmap=my_cmap,norm = norm) # ct = ax.contour(olon,olat,rain_data_new,clevs) # 绘制等值线 # clabel = ax.clabel(ct,fmt = '%i') position = fig.add_axes([0.82,0.2,0.05,0.2]) #位置【左,下,宽。高】 plt.colorbar(cf,cax=position) # 颜色参照表 position.set_yticklabels((0,10,25,50,100,250,500)) ax.xaxis.set_major_formatter(LongitudeFormatter(zero_direction_label=True)) ax.yaxis.set_major_formatter(LatitudeFormatter()) ax.set_xticks(np.arange(125,131,2),crs = ccrs.PlateCarree()) # x轴 ax.set_yticks(np.arange(44,47,2),crs = ccrs.PlateCarree()) # y轴 # ax.gridlines() #显示背景线 # # # #裁切 # clip = maskout.shp2clip(cf,ax,'haerbin/hrb.shp') clip = maskout.shp2clip(cf,ax,'haerbin/hrb.shp','hrb') #haerbin/shijie.shp shp/黑龙江省/市界.shp #从全国实际地图中获取辽宁省的市级边界并加载 # shpname = r'haerbin/hrb.shp' # shp/country1.shp # adm1_shapes=list(shpreader.Reader(shpname).geometries()) # ax.add_geometries(adm1_shapes[:],ccrs.PlateCarree(),edgecolor='k',facecolor='') #36:72东三省 plt.savefig('111.png') 1234567891011121314151617181920212223242526272829303132
**
maskout.py
**
#coding=utf-8 ################################################################################################################################### #####This module enables you to maskout the unneccessary data outside the interest region on a matplotlib-plotted output instance ####################in an effecient way,You can use this script for free ######################################################## ##################################################################################################################################### #####USAGE: INPUT include 'originfig':the matplotlib instance## # 'ax': the Axes instance # 'shapefile': the shape file used for generating a basemap A # 'region':the name of a region of on the basemap A,outside the region the data is to be maskout # OUTPUT is 'clip' :the the masked-out or clipped matplotlib instance. import shapefile from matplotlib.path import Path from matplotlib.patches import PathPatch def shp2clip(originfig,ax,shpfile,region): sf = shapefile.Reader(shpfile,encoding='utf-8') for shape_rec in sf.shapeRecords(): if shape_rec.record[2] == region: ####这里需要找到和region匹配的唯一标识符,record[]中必有一项是对应的。 vertices = [] codes = [] pts = shape_rec.shape.points prt = list(shape_rec.shape.parts) + [len(pts)] for i in range(len(prt) - 1): for j in range(prt[i], prt[i+1]): vertices.append((pts[j][0], pts[j][1])) codes += [Path.MOVETO] codes += [Path.LINETO] * (prt[i+1] - prt[i] -2) codes += [Path.CLOSEPOLY] clip = Path(vertices, codes) clip = PathPatch(clip, transform=ax.transData) for contour in originfig.collections: contour.set_clip_path(clip) return clip 12345678910111213141516171819202122232425262728293031323334
数据(自己造的) 列分别为 ID 、经度 、纬度 、高度(用不到) 、 降水量
还需要一个shp文件,自己百度下载吧。
最终结果如下:哈尔滨地区降水量色斑图